Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.601
Filtrar
1.
BMC Med Imaging ; 24(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600452

RESUMO

BACKGROUND: 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS: This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS: The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prótons , Estudos Retrospectivos , 60570 , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos
2.
J Agric Food Chem ; 72(15): 8731-8741, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579129

RESUMO

Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.


Assuntos
Aldeídos , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Prótons , Boca/química , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise
3.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630723

RESUMO

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Prótons , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular
4.
Cancer Radiother ; 28(2): 195-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599941

RESUMO

PURPOSE: Preclinical data demonstrated that the use of proton minibeam radiotherapy reduces the risk of toxicity in healthy tissue. Ventricular tachycardia radioablation is an area under clinical investigation in proton beam therapy. We sought to simulate a ventricular tachycardia radioablation with proton minibeams and to demonstrate that it was possible to obtain a homogeneous coverage of an arrhythmogenic cardiac zone with this technique. MATERIAL AND METHODS: An arrhythmogenic target volume was defined on the simulation CT scan of a patient, localized in the lateral wall of the left ventricle. A dose of 25Gy was planned to be delivered by proton minibeam radiotherapy, simulated using a Monte Carlo code (TOPAS v.3.7) with a collimator of 19 0.4 mm-wide slits spaced 3mm apart. The main objective of the study was to obtain a plan ensuring at least 93% of the prescription dose in 93% of the planning target volume without exceeding 110% of the prescribed dose in the planning target volume. RESULTS: The average dose in the planning treatment volume in proton minibeam radiotherapy was 25.12Gy. The percentage of the planning target volume receiving 93% (V93%), 110% (V110%), and 95% (V95%) of the prescribed dose was 94.25%, 0%, and 92.6% respectively. The lateral penumbra was 6.6mm. The mean value of the peak-to-valley-dose ratio in the planning target volume was 1.06. The mean heart dose was 2.54Gy versus 5.95Gy with stereotactic photon beam irradiation. CONCLUSION: This proof-of-concept study shows that proton minibeam radiotherapy can achieve a homogeneous coverage of an arrhythmogenic cardiac zone, reducing the dose at the normal tissues. This technique, ensuring could theoretically reduce the risk of late pulmonary and breast fibrosis, as well as cardiac toxicity as seen in previous biological studies in proton minibeam radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Estudos de Viabilidade , Terapia com Prótons/métodos , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
5.
Neuron ; 112(8): 1200-1202, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636452

RESUMO

In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.


Assuntos
Células de Merkel , Neurônios , Animais , Neurônios/metabolismo , Prótons , Neuritos/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/metabolismo , Mamíferos/metabolismo
6.
Biochem J ; 481(7): 499-514, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572757

RESUMO

Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Antiporters/metabolismo , Elétrons , Simulação de Dinâmica Molecular , Oxirredução , Benzoquinonas
7.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652667

RESUMO

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Assuntos
Redes Neurais de Computação , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Prótons
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612596

RESUMO

A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).


Assuntos
Antígenos de Grupos Sanguíneos , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Volvo Intestinal , Traumatismo por Reperfusão , Sepse , Animais , Camundongos , Modelos Animais de Doenças , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Sepse/complicações , Prótons , Isquemia
9.
Sci Rep ; 14(1): 8625, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616193

RESUMO

While particle therapy has been used for decades for cancer treatment, there is still a lack of information on the molecular mechanisms of biomolecules radiolysis by accelerated ions. Here, we examine the effects of accelerated protons on highly concentrated native myoglobin, by means of Fourier transform infrared and UV-Visible spectroscopies. Upon irradiation, the secondary structure of the protein is drastically modified, from mostly alpha helices conformation to mostly beta elements at highest fluence. These changes are accompanied by significant production of carbon monoxide, which was shown to come from heme degradation under irradiation. The radiolytic yields of formation of denatured protein, carbon monoxide, and of heme degradation were determined, and found very close to each other: G+denatured Mb ≈ G+CO ≈ G-heme = 1.6 × 10-8 ± 0.1 × 10-8 mol/J = 0.16 ± 0.01 species/100 eV. The denaturation of the protein to a beta structure and the production of carbon monoxide under ion irradiation are phenomena that may play an important role in the biological effects of ionizing radiation.


Assuntos
Mioglobina , Prótons , Monóxido de Carbono , Géis , Heme
10.
Sci Rep ; 14(1): 8468, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605022

RESUMO

Spatially Fractionated Radiotherapy (SFRT) has demonstrated promising potential in cancer treatment, combining the advantages of reduced post-radiation effects and enhanced local control rates. Within this paradigm, proton minibeam radiotherapy (pMBRT) was suggested as a new treatment modality, possibly producing superior normal tissue sparing to conventional proton therapy, leading to improvements in patient outcomes. However, an effective and convenient beam generation method for pMBRT, capable of implementing various optimum dose profiles, is essential for its real-world application. Our study investigates the potential of utilizing the moiré effect in a dual collimator system (DCS) to generate pMBRT dose profiles with the flexibility to modify the center-to-center distance (CTC) of the dose distribution in a technically simple way.We employ the Geant4 Monte Carlo simulations tool to demonstrate that the angle between the two collimators of a DCS can significantly impact the dose profile. Varying the DCS angle from 10 ∘ to 50 ∘ we could cover CTC ranging from 11.8 mm to 2.4 mm, respectively. Further investigations reveal the substantial influence of the multi-slit collimator's (MSC) physical parameters on the spatially fractionated dose profile, such as period (CTC), throughput, and spacing between MSCs. These findings highlight opportunities for precision dose profile adjustments tailored to specific clinical scenarios.The DCS capacity for rapid angle adjustments during the energy transition stages of a spot scanning system can facilitate dynamic alterations in the irradiation profile, enhancing dose contrast in normal tissues. Furthermore, its unique attribute of spatially fractionated doses in both lateral directions could potentially improve normal tissue sparing by minimizing irradiated volume. Beyond the realm of pMBRT, the dual MSC system exhibits remarkable versatility, showing compatibility with different types of beams (X-rays and electrons) and applicability across various SFRT modalities.Our study illuminates the dual MSC system's potential as an efficient and adaptable tool in the refinement of pMBRT techniques. By enabling meticulous control over irradiation profiles, this system may expedite advancements in clinical and experimental applications, thereby contributing to the evolution of SFRT strategies.


Assuntos
Terapia com Prótons , Lesões por Radiação , Humanos , Terapia com Prótons/métodos , Prótons , Radiação Ionizante , Método de Monte Carlo , Etoposídeo , Fracionamento da Dose de Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Medicine (Baltimore) ; 103(15): e37748, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608106

RESUMO

We aimed to investigate the accuracy of proton density fat fraction (PDFF) measurement of the lumbar vertebral bone marrow using chemical shift-encoded magnetic resonance imaging (CSE-MRI) with compressed sensing combined with parallel imaging (CSPI). This study recruited a commercially available phantom, and 43 patients. Fully sampled data without CSPI and under-sampled data with CSPI acceleration factors of 2.4, 3.6, and 4.8 were acquired using a 1.5T imaging system. The relationships between PDFF measurements obtained with the no-CSPI acquisition and those obtained with each CSPI acquisition were assessed using Pearson correlation coefficient (r), linear regression analyses, and Bland-Altman analysis. The intra- and inter-observer variabilities of the PDFF measurements were evaluated using the intraclass correlation coefficient. PDFF measurements obtained with all acquisitions showed a significant correlation and strong agreement with the reference PDFF measurement of the phantom. PDFF measurements obtained using CSE-MRI with and without CSPI were positively correlated (all acquisitions: r = 0.99; P < .001). The mean bias was -0.31% to -0.17% with 95% limits of agreement within ±2.02%. The intra- and inter-observer agreements were excellent (intraclass correlation coefficient: 0.988 and 0.981, respectively). A strong agreement and positive correlation were observed between the PDFF measurements obtained using CSE-MRI with and without CSPI. PDFF measurement of the lumbar vertebral bone marrow using CSE-MRI with CSPI can be acquired with a maximum reduction of approximately 75% in the acquisition time compared with a fully sampled acquisition.


Assuntos
Medula Óssea , Prótons , Humanos , Medula Óssea/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
12.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572830

RESUMO

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Assuntos
Betaproteobacteria , Cloretos , Peróxido de Hidrogênio , Oxirredutases , Propionatos , Peróxido de Hidrogênio/química , Catálise , Prótons , Concentração de Íons de Hidrogênio , Heme/química
13.
Nat Commun ; 15(1): 2967, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580666

RESUMO

GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Prótons , Lipídeos , Proteínas de Bactérias/metabolismo
14.
Appl Microbiol Biotechnol ; 108(1): 288, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587638

RESUMO

Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.


Assuntos
Escherichia coli , Lipídeos , Ornitina/análogos & derivados , Prótons , Escherichia coli/genética , Carbonil Cianeto m-Clorofenil Hidrazona , Lipídeos de Membrana , Fosfatos
15.
Sci Rep ; 14(1): 8193, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589544

RESUMO

The study aimed to determine the specific relative biological effectiveness (RBE) of various cells in the hippocampus following proton irradiation. Sixty Sprague-Dawley rats were randomly allocated to 5 groups receiving 20 or 30 Gy of proton or photon irradiation. Pathomorphological neuronal damage in the hippocampus was assessed using Hematoxylin-eosin (HE) staining. The expression level of NeuN, Nestin, Caspase-3, Olig2, CD68 and CD45 were determined by immunohistochemistry (IHC). The RBE range established by comparing the effects of proton and photon irradiation at equivalent biological outcomes. Proton20Gy induced more severe damage to neurons than photon20Gy, but showed no difference compared to photon30Gy. The RBE of neuron was determined to be 1.65. Similarly, both proton20Gy and proton30Gy resulted in more inhibition of oligodendrocytes and activation of microglia in the hippocampal regions than photon20Gy and photon30Gy. However, the expression of Olig2 was higher and CD68 was lower in the proton20Gy group than in the photon30Gy group. The RBE of oligodendrocyte and microglia was estimated to be between 1.1 to 1.65. For neural stem cells (NSCs) and immune cells, there were no significant difference in the expression of Nestin and CD45 between proton and photon irradiation (both 20 and 30 Gy). Therefore, the RBE for NSCs and immune cell was determined to be 1.1. These findings highlight the varying RBE values of different cells in the hippocampus in vivo. Moreover, the actual RBE of the hippocampus may be higher than 1.1, suggesting that using as RBE value of 1.1 in clinical practice may underestimate the toxicities induced by proton radiation.


Assuntos
Terapia com Prótons , Prótons , Ratos , Animais , Terapia com Prótons/métodos , Nestina , Eficiência Biológica Relativa , Ratos Sprague-Dawley , Hipocampo
16.
Eur Radiol Exp ; 8(1): 41, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584248

RESUMO

BACKGROUND: We investigated the value of three-dimensional amide proton transfer-weighted imaging (3D-APTWI) in the diagnosis of early-stage breast cancer (BC) and its correlation with the immunohistochemical characteristics of malignant lesions. METHODS: Seventy-eight women underwent APTWI and dynamic contrast-enhanced (DCE)-MRI. Pathological results were categorized as either benign (n = 43) or malignant (n = 37) lesions. The parameters of APTWI and DCE-MRI were compared between the benign and malignant groups. The diagnostic value of 3D-APTWI was evaluated using the area under the receiver operating characteristic curve (ROC-AUC) to establish a diagnostic threshold. Pearson's correlation was used to analyze the correlation between the magnetization transfer asymmetry (MTRasym) and immunohistochemical characteristics. RESULTS: The MTRasym and time-to-peak of malignancies were significantly lower than those of benign lesions (all p < 0.010). The volume transfer constant, rate constant, and wash-in and wash-out rates of malignancies were all significantly greater than those of benign lesions (all p < 0.010). ROC-AUCs of 3D-APTWI, DCE-MRI, and 3D-APTWI+DCE to differential diagnosis between early-stage BC and benign lesions were 0.816, 0.745, and 0.858, respectively. Only the difference between AUCAPT+DCE and AUCDCE was significant (p < 0.010). When a threshold of MTRasym for malignancy for 2.42%, the sensitivity and specificity of 3D-APTWI for BC diagnosis were 86.5% and 67.6%, respectively; MTRasym was modestly positively correlated with pathological grade (r = 0.476, p = 0.003) and Ki-67 (r = 0.419, p = 0.020). CONCLUSIONS: 3D-APTWI may be used as a supplementary method for patients with contraindications of DCE-MRI. MTRasym can imply the proliferation activities of early-stage BC. RELEVANCE STATEMENT: 3D-APTWI can be an alternative diagnostic method for patients with early-stage BC who are not suitable for contrast injection. KEY POINTS: • 3D-APTWI reflects the changes in the microenvironment of early-stage breast cancer. • Combined 3D-APTWI is superior to DCE-MRI alone for early-stage breast cancer diagnosis. • 3D-APTWI improves the diagnostic accuracy of early-stage breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Prótons , Amidas , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Microambiente Tumoral
17.
Front Endocrinol (Lausanne) ; 15: 1287930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577572

RESUMO

Objective: To evaluate the role of foot muscle amide proton transfer weighted (APTw) contrast and tissue rest perfusion in quantifying diabetic foot (DF) infection and its correlation with blood parameters. Materials and methods: With approval from an ethical review board, this study included 40 diabetes mellitus (DM) patients with DF and 31 DM patients without DF or other lower extremity arterial disease. All subjects underwent MRI, which included foot sagittal APTw and coronal arterial spin labeling (ASL) imaging. The normalized MTRasym (3.5 ppm) and the ratio of blood flow (rBF) in rest status of the affected side lesions to the non-affected contralateral side were determined. The inter-group differences of these variables were evaluated. Furthermore, the association between normalized MTRasym (3.5 ppm), rBF, and blood parameters [fasting blood glucose (FBG), glycosylated hemoglobin content, C-reactive protein, neutrophil percentage, and white blood cell count] was explored. Using an ROC curve, the diagnostic capacity of normalized MTRasym (3.5 ppm), BF, and blood biochemical markers in differentiating with or without DF in DM was assessed. Results: In the DF group, MTRasym (3.5 ppm) and BF in lesion and normalized MTRasym (3.5 ppm) were higher than those in the control group (p < 0.05). In addition, correlations were identified between normalized MTRasym (3.5 ppm) and blood parameters, such as C-reactive protein, glycosylated hemoglobin content, FBG, neutrophil ratio, and white blood cell (p < 0.001). Meanwhile, association between BF in lesion and blood parameters, such as C-reactive protein, neutrophil percentage, and FBG (p < 0.01). AUC of normalized MTRasym (3.5 ppm) in identifying with/without DF in patients with DM is 0.986 (95% CI, 0.918-1.00) with the sensitivity of 97.22% and the specificity of 100%. Conclusion: Normalized MTRasym (3.5 ppm) and the BF in lesion may be treated as a safer and more convenient new indicator to evaluate the tissue infection without using a contrast agent, which may be useful in monitoring and preoperatively assessing DF patients with renal insufficiency.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Prótons , Pé Diabético/diagnóstico por imagem , Amidas/química , Proteína C-Reativa , Estudos de Casos e Controles , Hemoglobinas Glicadas , Imageamento por Ressonância Magnética/métodos
18.
Cancer Imaging ; 24(1): 33, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439101

RESUMO

OBJECTIVES: To differentiate benign and malignant solitary pulmonary lesions (SPLs) by amide proton transfer-weighted imaging (APTWI), mono-exponential model DWI (MEM-DWI), stretched exponential model DWI (SEM-DWI), and 18F-FDG PET-derived parameters. METHODS: A total of 120 SPLs patients underwent chest 18F-FDG PET/MRI were enrolled, including 84 in the training set (28 benign and 56 malignant) and 36 in the test set (13 benign and 23 malignant). MTRasym(3.5 ppm), ADC, DDC, α, SUVmax, MTV, and TLG were compared. The area under receiver-operator characteristic curve (AUC) was used to assess diagnostic efficacy. The Logistic regression analysis was used to identify independent predictors and establish prediction model. RESULTS: SUVmax, MTV, TLG, α, and MTRasym(3.5 ppm) values were significantly lower and ADC, DDC values were significantly higher in benign SPLs than malignant SPLs (all P < 0.01). SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors. Within the training set, the prediction model based on these independent predictors demonstrated optimal diagnostic efficacy (AUC, 0.976; sensitivity, 94.64%; specificity, 92.86%), surpassing any single parameter with statistical significance. Similarly, within the test set, the prediction model exhibited optimal diagnostic efficacy. The calibration curves and DCA revealed that the prediction model not only had good consistency but was also able to provide a significant benefit to the related patients, both in the training and test sets. CONCLUSION: The SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors for differentiation of benign and malignant SPLs, and the prediction model based on them had an optimal diagnostic efficacy.


Assuntos
Fluordesoxiglucose F18 , Prótons , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amidas
19.
J Mass Spectrom ; 59(3): e5011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445810

RESUMO

Benzophenone and related derivatives are widely used as photoinitiators for food packaging to cure inks or lacquers with ultraviolet (UV) light on cardboard and paper. However, there are concerns about the potential health risks of their migration into food. Knowing the physical and chemical properties of benzophenone and its derivatives could play a significant role in their quantification and analysis using chemical ionization mass spectrometry (CI-MS) methods. These parameters are evaluated using B3LYP/6-311++** density functional theory (DFT) implemented on Gaussian code. Ion-molecule chemistry through the selection of reagent ions, reaction energetics and kinetics, thermodynamic stability, and reactivity of molecules deemed to foster VOC identification and quantification via CI-MS techniques. The VOCs under study are expected to undergo exothermic reactions from H3 O+ , NH4 + , NO+ , and O2 + ions, except endothermic proton transfer from NH4 + to 2-hydroxy-4-methoxybenzophenone and 2,3,4-trihydroxy benzophenone. These compounds possess less proton affinities than NH3 and are least stable in their protonated forms. The DFT computed properties provide the basis for developing reliable and accurate methods to detect and measure the presence of benzophenone and its derivatives in packaging materials and food products.


Assuntos
Embalagem de Alimentos , Prótons , Teoria da Densidade Funcional , Benzofenonas , Qualidade dos Alimentos , Espectrometria de Massas
20.
BMC Med Imaging ; 24(1): 58, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443786

RESUMO

BACKGROUND: MULTIPLEX is a single-scan three-dimensional multi-parametric MRI technique that provides 1 mm isotropic T1-, T2*-, proton density- and susceptibility-weighted images and the corresponding quantitative maps. This study aimed to investigate its feasibility of clinical application in Parkinson's disease (PD). METHODS: 27 PD patients and 23 healthy control (HC) were recruited and underwent a MULTIPLEX scanning. All image reconstruction and processing were automatically performed with in-house C + + programs on the Automatic Differentiation using Expression Template platform. According to the HybraPD atlas consisting of 12 human brain subcortical nuclei, the region-of-interest (ROI) based analysis was conducted to extract quantitative parameters, then identify PD-related abnormalities from the T1, T2* and proton density maps and quantitative susceptibility mapping (QSM), by comparing patients and HCs. RESULTS: The ROI-based analysis revealed significantly decreased mean T1 values in substantia nigra pars compacta and habenular nuclei, mean T2* value in subthalamic nucleus and increased mean QSM value in subthalamic nucleus in PD patients, compared to HCs (all p values < 0.05 after FDR correction). The receiver operating characteristic analysis showed all these four quantitative parameters significantly contributed to PD diagnosis (all p values < 0.01 after FDR correction). Furthermore, the two quantitative parameters in subthalamic nucleus showed hemicerebral differences in regard to the clinically dominant side among PD patients. CONCLUSIONS: MULTIPLEX might be feasible for clinical application to assist in PD diagnosis and provide possible pathological information of PD patients' subcortical nucleus and dopaminergic midbrain regions.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Doença de Parkinson , Humanos , Estudos de Viabilidade , Doença de Parkinson/diagnóstico por imagem , Prótons , Dopamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...